Conformer Chú ý: Mọi người nên tìm hiểu kỹ về Transformer và Multi-head Self Attention trước khi đọc bài này. Câu hỏi cho người đọc: Có cần thiết áp dụng Macron-style và Relative Position Encoding cho Conformer trong các bài toán xử lý tiếng nói hay không? ASR Conformer Trước khi đi vào phần chính, chúng ta sẽ lướt qua xem hướng tiếp cận đang cho hiệu quả cao nhất trong nhận dạng tiếng nói, RNN-Transducer và những biến thể cải tiến của nó. Mô hình chung của một Neural RNN-Transducer được biểu diễn trong hình 1. Hình 1: Neural Transducer [1] Trong đó, Predictor và Encoder có thể được xây dựng bởi nhiều kiến trúc khác nhau như RNNs, LSTM hay Transformer để đưa ra các biểu diễn trung gian của các chuỗi đầu vào. Với Predictor là biểu diễn của chuỗi văn bản (label), và Encoder là biểu diễn của chuỗi audio-frame. Cùng với Predictor và Encoder, RNN-T loss được sử dụng để cực đại hóa tổng xác suất của mọi alignment giữa audio đầu vào và văn bản đầu ra, từ đó giúp cho mô hình học được alignme...
Trước khi đi sâu tìm hiểu về Attention ta sẽ xem xét một chút về mô hình S equence to S equence và lý do vì sao attention lại được áp dụng cho mô hình này. Tôi có đọc nhiều bài viết trên mạng và thấy có nhiều người cho rằng Sequence to Sequence model là một trường hợp đặc biệt của Auto-Encoder, hay là một mô hình học sâu, tuy nhiên đây là một nhầm lẫn tai hại về khái niệm. Thực tế việc sử dụng Auto-Encoder chỉ là một trong những giải pháp giải quyết các vấn đề về Sequence to Sequence, tuy nhiên thì đây là giải pháp được dùng phổ biến và hiệu quả nhất hiện nay, do đó trong bài viết này chúng ta ngầm hiểu Sequence to Sequence model cũng chính là Auto-Encoder model. Sequence to Sequence Models Sequence to Sequence models là một lớp các mô hình được đề xuất để giải quyết các lớp bài toán liên quan đến chuỗi như: Dịch máy, nhận dạng tiếng nói, tổng hợp tiếng nói,… Dịch Máy (Machine Translation): Là hệ thống tự động dịch văn bản từ ngôn ngữ nguồn sang ngôn ngữ đích. Hình 1: Ví dụ về dịch máy...